ORGANIC LETTERS

2013 Vol. 15, No. 23 6058–6061

Asymmetric NHC-Catalyzed Redox α -Amination of α -Aroyloxyaldehydes

James E. Taylor, David S. B. Daniels, and Andrew D. Smith*

EaStCHEM, School of Chemistry, University of St Andrews, North Haugh, St Andrews, KY16 9ST, United Kingdom

ads10@st-andrews.ac.uk

Received October 14, 2013

ABSTRACT

Asymmetric α -amination through an N-heterocyclic carbene (NHC)-catalyzed redox reaction of α -aroyloxyaldehydes with *N*-aryl-*N*-aroyldiazenes to form α -hydrazino esters with high enantioselectivity (up to 99% ee) is reported. The hydrazide products are readily converted into enantioenriched *N*-aryl amino esters through samarium(II) iodide mediated N-N bond cleavage.

The enantioselective organocatalytic α -amination of carbonyl compounds using a variety of electrophilic nitrogen sources has received much attention due to the prevalence of the resulting α -amino carbonyl motif within biologically active compounds. For example, a common strategy involves addition to azodicarboxylates using either enamine or hydrogen-bonding organocatalysts. ^{2,3}

- (1) For selected reviews, see: (a) Vilaivan, T.; Bhanthumnavin, W. *Molecules* **2010**, *15*, 917–958. (b) Baktharaman, S.; Hili, R.; Yudin, A. K. *Aldrichimica Acta* **2008**, *41*, 109–119. (c) Najera, C.; Sansano, J. M. *Chem. Rev.* **2007**, *107*, 4584–4671. (d) Guillena, G.; Ramon, D. J. *Tetrahedron: Asymmetry* **2006**, *17*, 1465–1492. (e) Marigo, M.; Jorgensen, K. A. *Chem. Commun.* **2006**, 2001–2011. (f) Janey, J. M. *Angew. Chem., Int. Ed.* **2005**, *44*, 4292–4300. (g) Greck, C.; Drouillat, B.; Thomassigny, C. *Eur. J. Org. Chem.* **2004**, 1377–1385. (h) Erdik, E. *Tetrahedron* **2004**, *60*, 8747–8782. (i) *Modern Amination Methods*; Ricci, A., Ed.; Wiley-VCH: Weinheim, Germany, 2000
- (2) For selected examples, see: (a) Bøgevig, A.; Juhl, K.; Kumaragurubaran, N.; Zhuang, W.; Jørgensen, K. A. *Angew. Chem., Int. Ed.* **2002**, *41*, 1790–1793. (b) List, B. *J. Am. Chem. Soc.* **2002**, *124*, 5656–5657. (c) Saaby, S.; Bella, M.; Jørgensen, K. A. *J. Am. Chem. Soc.* **2004**, *126*, 8120–8121. (d) Terada, M.; Nakano, M.; Ube, H. *J. Am. Chem. Soc.* **2006**, *128*, 16044–16045
- (3) Recently MacMillan et al. reported an elegant direct α-amination of aldehydes using photoredox catalysis; see: Cecere, G.; König, C. M.; Alleva, J. L.; MacMillan, D. W. C. *J. Am. Chem. Soc.* **2013**, *135*, 11521–11524.
- (4) For reviews on NHC-redox catalysis, see: (a) Ryan, S. J.; Candish, L.; Lupton, D. W. *Chem. Soc. Rev.* **2013**, *42*, 4906–4917. (b) Vora, H. U.; Wheeler, P.; Rovis, T. *Adv. Synth. Catal.* **2012**, *354*, 1617–1639. (c) Douglas, J.; Churchill, G.; Smith, A. D. *Synthesis* **2012**, *44*, 2295–2309. (d) Rong, Z. Q.; Zhang, W.; Yang, G. Q.; You, S. L. *Curr. Org. Chem.* **2011**, *15*, 3077–3090.

N-Heterocyclic carbene (NHC)-redox catalysis, promoted through addition of an NHC to an aldehyde bearing an α -reducible functional group, allows access to a range of catalytic intermediates including acyl azoliums, azolium enolates, and homoenolates. Despite the widely demonstrated utility of NHC-redox catalysis, there are only limited reports of its use in amination processes. For example, Scheidt et al. first demonstrated that enals undergo NHC-catalyzed redox β -amination via a homoenolate intermediate with N-aryl-N-aroyldiazenes, followed by cyclization, to form (\pm)-pyrazolidinones (Scheme 1a). Ye et al. subsequently found that azolium enolate intermediates accessed through direct addition of an NHC to disubstituted ketenes undergo [4+2]-cycloadditions with N-aryl-N-aroyldiazenes to form 1,3,4-oxadiazin-6-ones (Scheme 1b).

Herein we report an asymmetric NHC-catalyzed redox α -amination using α -aroyloxyaldehydes as azolium enolate precursors. Reaction with *N*-aryl-*N*-aroyldiazenes forms α -hydrazino esters with excellent enantioselectivity (Scheme 1c). Further derivatization of these α -hydrazino esters into the corresponding *N*-aryl amino esters through

⁽⁵⁾ Chan, A.; Scheidt, K. A. J. Am. Chem. Soc. 2008, 130, 2740–2741.
(6) Huang, X. L.; He, L.; Shao, P. L.; Ye, S. Angew. Chem., Int. Ed. 2009, 48, 192–195.

⁽⁷⁾ For our complementary isothiourea catalyzed synthesis of α-aryl α-hydrazino esters, see: Morrill, L. C.; Lebl, T.; Slawin, A. M. Z.; Smith, A. D. *Chem. Sci.* **2012**, *3*, 2088–2093.

Scheme 1. NHC-Catalyzed Amination Reactions

samarium(II) iodide mediated N-N bond cleavage has also been investigated.

As we have previously demonstrated, α -aroyloxyaldehydes are bench stable precursors for the NHC-catalyzed generation of both acyl azolium and azolium enolate intermediates. They are readily prepared on gram scale from the parent aldehyde and 4-nitrobenzoic acid using Ishihara et al.'s α -oxyacylation methodology and can be stored for a number of months without decomposition. We envisaged that azolium enolate intermediates generated through addition of an NHC to α -aroyloxyaldehydes would undergo [4+2] cycloadditions with *N*-aryl-*N*-aroyldiazenes to form 1,3,4-oxadiazin-6-ones, which could then be ring opened with methanol to form α -hydrazino esters. α -oxyacylation esters.

Table 1. Optimization

entry	base	solvent	$t \\ (^{\circ}\mathrm{C})$	prod.	$\begin{array}{c} \text{conversion} \\ (\%)^a \end{array}$	ee (%) ^b
1	Cs_2CO_3	THF	rt	NA	0	NA
2	K_2CO_3	THF	\mathbf{rt}	3	70	90
3	$\mathrm{Et_{3}N}$	THF	rt	3	93	90
4	$\mathrm{Et_{3}N}$	$\mathrm{CH_2Cl_2}$	\mathbf{rt}	3	>99	92
5	$\mathrm{Et_{3}N}$	$\mathrm{CH_2Cl_2}$	0	3	$>99 (65^c)$	95
6^d	$\mathrm{Et_{3}N}$	$\mathrm{CH_2Cl_2}$	0	4	$>99 (89^c)$	96

^a Conversion into product determined by ¹H NMR analysis of the crude reaction mixture. ^b Determined by HPLC analysis. ^c Isolated yield. ^d Reaction quenched with MeOH.

First the reaction between α -arovloxyaldehyde 2 and N-phenyl-N-benzoyldiazene using 10 mol % NHC precatalyst 1 was investigated. 13 Initial studies found that using triethylamine as a base was more effective than inorganic bases such as cesium or potassium carbonate, leading to 93% conversion into cycloadduct 3 in 90% ee after 6 h (Table 1, entries 1-3). ^{14,15} Switching the solvent to dichloromethane resulted in complete conversion into 3 (Table 1, entry 4), while starting the reaction at 0 °C improved the ee to 95% without reducing the conversion (Table 1, entry 5). However, despite high conversion into product the isolated yield of 1,3,4-oxadiazin-6-one 3 was only 65% due to the instability of the heterocycle to chromatographic purification on silica. 16 This problem was readily overcome by ring-opening product 3 in situ with methanol, allowing α -hydrazino ester 4 to be isolated in 89% yield and 96% ee (Table 1, entry 6).

With an optimized protocol in hand, the scope of the reaction was investigated using a series of N-aryl-N-aroyl-diazenes (Table 2). The reaction of α -aroyloxyaldehyde 2 with electron-rich N-aryl substituted diazenes (4-MeOC₆H₄ and 3,4-(MeO)₂C₆H₃) required an electron-withdrawing N-aroyl component (4-CF₃C₆H₄) to maintain high yields, with α -hydrazino esters 5 and 6 isolated in 69% and 93% yield, respectively. In contrast, electron-deficient N-aryl substituted diazenes (4-CF₃C₆H₄ and 4-NCC₆H₄) formed α -hydrazino esters 7 and 8 in reduced yields (56% and 48% respectively) presumably due to competitive side reactions

Org. Lett., Vol. 15, No. 23, **2013**

^{(8) (}a) Ling, K. B.; Smith, A. D. *Chem. Commun.* **2011**, *47*, 373–375. (b) Davies, A. T.; Taylor, J. E.; Douglas, J.; Collett, C. J.; Morrill, L. C.; Fallan, C.; Slawin, A. M. Z.; Churchill, G.; Smith, A. D. *J. Org. Chem.* **2013**, *78*, 9243–9257.

⁽⁹⁾ Uyanik, M.; Suzuki, D.; Yasui, T.; Ishihara, K. Angew. Chem., Int. Ed. 2011, 50, 5331–5334.

⁽¹⁰⁾ For examples of α -haloaldehydes as azolium enolate precursors in NHC-catalyzed redox [4 + 2] cycloadditions, see: (a) He, M.; Uc, G. J.; Bode, J. W. *J. Am. Chem. Soc.* **2006**, *128*, 15088–15089. (b) He, M.; Beahm, B. J.; Bode, J. W. *Org. Lett.* **2008**, *10*, 3817–3820. (c) Kobayashi, S.; Kinoshita, T.; Uehara, H.; Sudo, T.; Ryu, I. *Org. Lett.* **2009**, *11*, 3934–3937. (d) Yang, L. M.; Wang, F.; Chua, P. J.; Lv, Y. B.; Zhong, L. J.; Zhong, G. F. *Org. Lett.* **2012**, *14*, 2894–2897. (e) Jian, T.-Y.; Sun, L.-H.; Ye, S. *Chem. Commun.* **2012**, *48*, 10907–10909.

⁽¹¹⁾ Chi et al. have shown that azolium enolates can be accessed through NHC addition to 4-nitrophenyl esters followed by deprotonation; see: (a) Hao, L.; Du, Y.; Lv, H.; Chen, X. K.; Jiang, H. S.; Shao, Y. L.; Chi, Y. R. *Org. Lett.* **2012**, *14*, 2154–2157. (b) Hao, L.; Chuen, C. W.; Ganguly, R.; Chi, Y. R. *Synlett* **2013**, *24*, 1197–1200. (c) Hao, L.; Chen, S.; Xu, J.; Tiwari, B.; Fu, Z.; Li, T.; Lim, J.; Chi, Y. R. *Org. Lett.* **2013**, *15*, 4956–4959.

⁽¹²⁾ Azolium enolates can also be accessed from unsubstituted aldehydes under oxidative conditions; see: (a) Zhao, X.; Ruhl, K. E.; Rovis, T. *Angew. Chem., Int. Ed.* **2012**, *51*, 12330–12333. (b) Mo, J.; Yang, R.; Chen, X.; Tiwari, B.; Chi, Y. R. *Org. Lett.* **2013**, *15*, 50–53.

⁽¹³⁾ We found diazodicarboxylates to be completely unreactive under a number of different conditions.

⁽¹⁴⁾ Authentic racemic samples of all products were prepared using (rac)-1 as the catalyst.

⁽¹⁵⁾ Absolute configuration assigned by comparison of the specific rotation of cleaved *N*-aryl α -amino esters with the literature. (*R*)-26 $[\alpha]_D^{20}$ –28.4 (*c* 1.48 in CHCl₃) {Lit. (*S*)-26 $[\alpha]_D^{20}$ +26.6 (*c* 1.3 in CHCl₃)}. McKerrow, J. D.; Al-Rawi, J. M.; Brooks, P. *Asian J. Chem.* 2012, 24, 1227–1236.

⁽¹⁶⁾ Upon isolation, heterocycle 3 is stable for up to ca. 1 month when stored in a freezer before undergoing ring opening.

Table 2. Variation of the N-Aryl-N-aroyldiazene

^a Isolated yields. ^b ee determined by HPLC analysis.

between the NHC and the diazene. This was most noticeable using an N-aryl 4-NO₂C₆H₄ substituted diazene, which underwent significant decomposition and gave low yields of the desired α -hydrazino ester even when the diazene was added to the reaction dropwise via syringe pump over a number of hours. Halogen substituents were well tolerated, with α -hydrazino esters $\bf 9$ and $\bf 10$ isolated in good yields and excellent ee. N-Aryl substitution in the meta-position was also tolerated, with m-tolyl hydrazide $\bf 11$ isolated in 64% yield and 94% ee. However, N-aryl ortho-substitution was not possible, with an o-tolyl substituted diazene giving poor conversion into the corresponding hydrazide.

We next explored the scope of the α -aroyloxyaldehyde in the NHC-catalyzed redox α -amination with *N*-4-(methoxy)phenyl-*N*-4-(trifluoromethyl)benzoyl diazene under the standard reaction conditions (Table 3). Straight chain alkyl, β - and γ -branched alkyl, and benzyl substituted α -aroyloxyaldehydes were well tolerated, forming α -hydrazino esters **12**–**18** in good yield and excellent enantioselectivity (61–90% yield, 89–98% ee). The formation of α -hydrazino ester **14** is particularly notable, as β -branched substituents are notoriously poorly tolerated in reactions of azolium enolates. ^{11c,17} This methodology therefore allows simple aldehydes to be functionalized in two steps

Table 3. Variation of the α -Aroyloxyaldehyde

product	yield ^a (ee) ^b	product	yield ^a (ee) ^b
Me _{//,_} CO ₂ Me		ⁿ Bu _{∕∕√} CO ₂ Me	
Ar ^{1, N} .NH	69% (92%)	Ar ^{1-N} -NH	77% (89%)
0 Ar ² 5		0 Ar ²	
Me √// _{No.} CO₂Me		Me Me Me CO ₂ Me	
Me N Ar ¹ NH	70% (93%)	Ar ¹ .NH	61% (98%)
O Ar ² 13		O Ar ² 14	
Ph CO ₂ Me	90%	BnO CO₂Me	62%
Ar ^{1-N} `NH	(98%)	Ar ^{1-N} NH	(92%)
O Ar ² 15		0 Ar ² 16	
O CO ₂ Me	75% (96%)	MeO Ar¹ N NH	e 61% (96%)
0 Ar ²		0 Ar ²	

^a Isolated yields. ^b ee determined by HPLC analysis.

via the α -aroyloxyaldehyde into synthetically useful enantioenriched α -hydrazino esters.

The synthetic utility of the α -hydrazino ester products was demonstrated through samarium(II) iodide mediated N–N bond cleavage into the corresponding *N*-aryl amino esters. The synthesis of *N*-aryl amino acid derivatives is of importance due to the presence of this motif within pharmacologically important molecules and is often achieved through transition-metal catalyzed *N*-arylation. This methodology provides a simple, racemization-free alternative for the synthesis of novel *N*-aryl amino esters. For example, α -hydrazino ester 5 was readily cleaved through dropwise addition of freshly prepared SmI₂ (ca. 0.1 M in THF) at -78 °C in methanol to form *N*-aryl amino ester 19 in 70% yield and 92% ee. The reaction proceeded cleanly, with

Org. Lett., Vol. 15, No. 23, 2013

⁽¹⁷⁾ Further increasing the steric demand of the α -aroyloxyaldehyde substituent to either α -tBu, or α , α -cyclopentyl (to give a quaternary center in the product) gave no reaction.

⁽¹⁸⁾ For selected examples of SmI₂ mediated N–N bond cleavage of related substrates, see: (a) Theodorou, A.; Papadopoulos, G. N.; Kokotos, C. G. *Tetrahedron* **2013**, *69*, 5438–5443. (b) Liu, C.; Zhu, Q.; Huang, K.-W.; Lu, Y. *Org. Lett.* **2011**, *13*, 2638–2641. (c) Shigenaga, A.; Yamamoto, J.; Nishioka, N.; Otaka, A. *Tetrahedron* **2010**, *66*, 7367–7372. (d) Poulsen, T. B.; Alemparte, C.; Jørgensen, K. A. *J. Am. Chem. Soc.* **2005**, *127*, 11614–11615. (e) Chowdari, N. S.; Barbas, C. F., III. *Org. Lett.* **2005**, *7*, 867–870.

⁽¹⁹⁾ For selected examples of *N*-arylation of α-amino acid derivatives, see: (a) Hammoud, H.; Schmitt, M.; Blaise, E.; Bihel, F.; Bourguignon, J. J. *J. Org. Chem.* **2013**, *78*, 7930–7937. (b) Dong, J. Y.; Wang, Y.; Xiang, Q. J.; Lv, X. R.; Weng, W.; Zeng, Q. L. *Adv. Synth. Catal.* **2013**, *355*, 692–696. (c) Ma, D.; Zhang, Y.; Yao, J.; Wu, S.; Tao, F. *J. Am. Chem. Soc.* **1998**, *120*, 12459–12467. (d) Ma, D.; Yao, J. *Tetrahedron: Asymmetry* **1996**, *7*, 3075–3078.

⁽²⁰⁾ Szostak, M.; Spain, M.; Procter, D. J. J. Org. Chem. 2012, 77, 3049–3059.

Table 4. Samarium(II) Iodide Mediated N-N Bond Cleavage

			1.19
product	yield" (ee) ^h	product	yield ^a (ee) ^b
Me CO ₂ Me HN OMe	from 5 70% (92%)	Me _{n.} CO ₂ Me HN CO ₂ F	from 9 67% (95%)
Me,,CO ₂ Me HNBr	from 10 54% (96%)	Me, CO ₂ Me HN Me	from 11 56% (94%)
Me ₄ CO ₂ Me HN 23	from 4 48% (94%)	Me HN OMe	from 13 80% (92%)
Me Me Me Me Me Me Me Me Me Me Me Me Me M	from 14 62% (97%)	Ph CO ₂ Me HN OMe	from 15 78% (97%)
BnO CO ₂ Me	from 16 69% (92%)	HN Ar1	from 17 75% (97%)
27	*10	28 , $Ar^1 = 4\text{-MeOC}_6H_4$	

^a Isolated yields. ^b ee determined by HPLC analysis.

the product obtained after straightforward chromatographic separation from the primary amide byproduct. The generality of this process was demonstrated through the N-N bond cleavage of a selection of α -hydrazino esters, giving a range of N-aryl amino esters 20-28 in good yield (48-80%) without any observed erosion in enantioselectivity (Table 4). The absolute (R)-configuration of the N-aryl amino esters was confirmed through N-PMP deprotection of 26 into phenylalanine methyl ester with ceric ammonium nitrate (CAN) and comparison of its specific rotation with the literature.²¹

The proposed catalytic cycle is shown in Scheme 2. Initially the free NHC, generated *in situ* through deprotonation of NHC precursor 1, adds to the α -aroyloxyaldehyde to form an initial adduct.²² Previously reported

Scheme 2. Proposed Catalytic Cycle

mechanistic studies through measurement of a kinetic isotope effect suggest that subsequent deprotonation of this adduct to form the Breslow intermediate is kinetically significant in NHC-catalyzed redox reactions of α -aroyloxyaldehydes. Elimination of p-nitrobenzoate, followed by deprotonation, forms the key azolium enolate intermediate. Computational studies by Bode et al. on the reaction of a related azolium enolate with a simple enone lead us to suggest that the azolium enolate and the diazene undergo an asynchronous *endo*-hetero-Diels—Alder reaction. ²³ The catalyst can then be regenerated and release the 1,3,4-oxadiazin-6-one product that can either be isolated or ring opened with methanol.

In conclusion, we have developed an enantioselective NHC-catalyzed redox α -amination of α -aroyloxyaldehydes with N-aryl-N-aroyldiazenes to form a wide range of enantioenriched α -hydrazino esters. These synthetically useful hydrazide products are readily converted into N-aryl amino esters without loss in enantioselectivity through treatment with samarium(II) iodide.

Acknowledgment. We thank Malcolm Spain and Professor David J. Procter (University of Manchester) for helpful advice regarding the preparation of SmI₂. We thank the Royal Society for a University Research Fellowship (A.D.S.), the European Research Council under the European Union's Seventh Framework Programme (FP7/2007-2013), ERC Grant Agreement No. 279850 (J.E.T.), and the EPSRC (EP/J018139/1) (D.S.B.D.) for funding. We also thank the EPSRC National Mass Spectrometry Service Centre (Swansea).

Supporting Information Available. Experimental procedures and spectroscopic data. This material is available free of charge via the Internet at http://pubs.acs.org.

Org. Lett., Vol. 15, No. 23, **2013**

⁽²¹⁾ See Supporting Information for experimental details. Phenylalanine methyl ester from **26** $[\alpha]_D^{20} - 31.3$ (c 1.2 in EtOH) {Lit. (R)-phenylalanine methyl ester $[\alpha]_D^{23} - 32.2$ (c 1.0 in EtOH)}. Davies, S. G.; Garner, A. C.; Ouzman, J. V. A.; Roberts, P. M.; Smith, A. D.; Snow, E. J.; Thomson, J. E.; Tamayo, J. A.; Vickers, R. J. *Org. Biomol. Chem.* **2007**, *5*, 2138–2147.

^{(22) (}a) Collett, C. J.; Massey, R. S.; Maguire, O. R.; Batsanov, A. S.; O'Donoghue, A. C.; Smith, A. D. *Chem. Sci.* **2013**, *4*, 1514–1522. (b) Massey, R. S.; Collett, C. J.; Lindsay, A. G.; Smith, A. D.; O'Donoghue, A. C. *J. Am. Chem. Soc.* **2012**, *134*, 20421–20432.

^{(23) (}a) Mahatthananchai, J.; Bode, J. W. *Chem. Sci.* **2012**, *3*, 192–197. (b) Allen, S. E.; Mahatthananchai, J.; Bode, J. W.; Kozlowski, M. C. *J. Am. Chem. Soc.* **2012**, *134*, 12098–12103.

The authors declare no competing financial interest.